

AND SOLUTIONS IN THE INSPECTION OF ANCHOR CHAIN

锚链是对船舶、军舰、海上移动平台、 浮式生产平台,海上装载系统等定位和系 泊用的,是船舶重要的甲板机械。

用于制造锚链及附件的原材料验收 时出现的问题

钢材进厂后,对所进材料进行复验, 复验内容包括化学成分分析和机械性能试 验,试验结果符合CCS《材料与焊接规范》 2003年修改通报中第10章第2节的相关 要求的,则可下料使用。反之,则应重新 取双倍试样进行复验,若试验结果符合 CCS《规范》的要求,则可下料使用,否 则,这批钢材不允许使用。

对于原材料混料问题, 如果是钢厂 发货造成的, 锚链制造厂应将材料退回钢 厂。对于锚链制造厂由于原材料管理不 善, 有时将规格相近或规格相同而级别不 同的锚链钢混料,从而造成锚链超差,配 合不好或锚链节报废等事故,此种情况一 经发现,应立即要求工厂针对混料事故进 行处理并加强原材料的管理工作, 防止此 类事故再次发生。

对规格相同而级别不同的锚链钢混 料:

无论对混入锚链高于或低于生产规 格的锚链钢,一经发现,依据CCS《规范》, 此锚链一律作为废品处理。

对规格相近的锚链钢的混料:

对个别链环混料时,应加强每节链环 的尺寸检查, 如发现链环超差 (特别是链 环环冠处超差时),则此链节作废品处理。

车 锐

对表面裂纹的原材料, 锚链制造厂质 检员应在制链前将裂纹材料检出,并通知 钢厂作质量分析。对于已制成链环的裂纹 材料, 由下道工序质检员检出, 作为废环 处理。由验船师发现的裂纹长度超过3mm 的链环一律作为废环处理。

锚链及附件的表面质量检查

按照CCS《材料与焊接规范》(1998) 2003年修改通报中第10章第2节的要求。 所有锚链及附件表面应光洁, 无裂纹、沟 槽、弧坑或烧伤、分层等缺陷, 以及降低 产品性能的其他缺陷。

发现成品链环表面出现较大裂纹的链 环一律作为废环处理,并将该环换掉,重 新进行热处理,进行拉力负荷和破断负荷 试验,试验合格,该链节予以验收。否则, 该链节作为废品处理。对于小的表面缺 陷,可采用打磨的办法予以消除,但打磨 后的链环应不超出公差的要求, 打磨部位 应与其周围的表面平滑过渡,同时对远离 链冠部位的打磨深度允许放宽,但不应超 过公称链径的5%。如缺陷超出负偏差需 进行补焊时,应将有关焊补工艺规程提交 CCS 认可(链冠处不允许焊补),按照批 准的焊补工艺规程,由持有有效合格的焊

工用和链环相同材料的焊条补焊,焊后用 砂轮磨光。但焊补必须在热处理前进行。

链环出现的弧坑或烧伤。主要是锚链 锈蚀和电极上的氧化渣造成的, 故在操作 中应及时将弧坑或烧伤中的氧化渣清除干

横档应处于链环的中心位置,并与链 环的两侧保持垂直。横档应压入母材一定 的深度, 保证横档不松动。横档的歪斜, 主要是操作工人在压档操作不当所致。若 横档具有良好的配合,且横档两端与链环 内侧没有间隙,则允许存在不超过CCS 《材料与焊接规范》(1998) 2003年修改通 报中第10章第2节10.2.6.2(5)条的规定。 否则应更换该链环。

挤档的原因主要是链环的两内侧有焊 渣, 焊渣被压入横档端部和母材之间, 一 旦形成就无法去除。现在工厂采用挡渣 板, 将压入横档的母材处挡住, 焊渣就不 会沾到材料上,挤档问题就可以有效地控 制了。

通常链环焊接缝去刺不当或链环成型 差的缺陷, 主要是胎、模、夹、刀具使用, 管理不当和操作人员调整不及所致。对于 链环毛刺过高, 工厂必须将高处部位打磨 掉,并保证平滑过渡,对干链环成型差的, 应作废品处理。为了从根本提高链环质 量,工厂应该加强胎、模、夹、刀具使用

84 2004年2月 中国船检

港改造,旧码头维修,港口设备安装经验丰富020-87656890ffcc东地质太厦4023 验船师园地|

管理作为主要质量控制点,并加强操作人 员责任心教育,尽量减少人为因素造成的 上述缺陷。

锚链及附件的尺寸抽查检验

从每节 27.5m 长的链节上选取三个 链环进行制造公差和外观主要缺陷的检 查,其尺寸和公差范围应符合CCS《材料 与焊接规范》(1998) 2003年修改通报中 第10章第2节10.2.6条的规定,如果有 一条链环不符合规定的公差,应从每27. 5m 长的链节上选取五个链环进行测量, 五个链环如有二个超差,则应对该链节的 全部链环进行测量。如检查符合要求,则 认为这批链节合格。否则,则认为这批链 节不合格。

对同一级别,同一规格,同一炉号, 同一工艺和同一热处理工艺的附件,对制 造公差和外观主要缺陷进行检查,其尺寸 公差应符合CCS《材料与焊接规范》(1998) 2003年修改通报中第10章第2节10.2.6. 3条的规定。如检查符合要求,则认为这 批附件合格。否则,则认为这批附件不合 格。

锚链及附件的拉力负荷试验

每节锚链及附件应在经计量鉴定合 格的拉力机上,按照CCS《材料与焊接规 范》(1998) 2003年修改通报中第10章第 2节表10.2.8.2相应等级锚链及附件规定 的拉力负荷进行试验。拉力试验后,应保 持10%的拉力负荷情况下对该链节整节 长度和相连的五环长进行测量,测量结果 必须在公差范围内, 否则应将相应的链环 或附件报废。链节进行拉力负荷试验时, 每一节链环拉断环数不得超过下列规定的 环数: d<22mm 时,不得超过二环; d ≥ 22mm 时,不得超过一环。否则,该链节 作废。当卸除负荷后,每节链环永久伸长 应不超过原始长度的5%。

锚链及附件的破断负荷试验

验船师应从每批不超过四节的锚链 选取一节锚链, 切去不少于3个链环的试 样,并按照CCS《材料与焊接规范》(1998) 2003年修改通报中第10章第2节表10.2.

8.2相应等级锚链规定的破断负荷进行试 验。如果拉断试验不符合要求,则可以在 同一节锚链上再取一个试样进行试验,如 能符合要求,则认为试验合格。如果复试 仍不合格,则该节锚链判为不合格,但也 可根据锚链厂的要求,将其余3节锚链分 别作为拉断试验, 若其中1个试验结果不 符合要求,则3节锚链全部不合格。

锚链附件的拉断试验:对由25个或 不足25个卸扣、转环、旋转卸扣、加大链 环和末端链环组成的每个制造批量(炉罐 号, 链径和热处理相同) 应取1个附件作 为拉断试验试样,而对连接链环则以50个 或不足50个为一个制造批量,取1个链环 作为试样,按CCS《材料与焊接规范》 (1998) 2003年修改通报中第10章第2节 表 10.2.8.2 相应等级锚链附件规定的破 断负荷进行试验。如果拉断试验失败,必 须在同一批次附件中再取 2 件作破断试 验,只有这2件附件全部合格,该批附件 才予以验收。否则,该批附件作废。

凡同时符合下列条件的,可同意免作 拉断试验:

对相同结构附件进行认可试验时,其 拉断负荷已被验证者: 每一制造批量的力 学性能和冲击功已被验证者; 已对附件采 用适当的无损检测者。

三级锚链及附件、二级锚链附件的 力学性能试验

三级锚链链环的力学性能试验时,应 从每4节焊接锚链中取1个拉伸试样和2组 各3个夏比V型缺口冲击试样进行试验。拉 伸试样和1组3个冲击试样应在与焊缝相 对部位的母材上截取, 而另1组3个冲击试 样的缺口应位于焊缝中心。为了取样,在 每一个锚链节上应有1个附加的链环(如 链环直径较小,应准备几个附件链环),该 节锚链不可再截取拉断试验试样。试验链 环应与该节锚链一起制造和热处理。

链环力学性能试验不合格,可进行热 处理后重新取样,再作拉伸、冲击试验, 复验一次后仍不合格的,则该链节作废。

当一组3个冲击试样得到的结果不符

合规定时, 只要低于规定平均值的单值不 超过两个,且最多只有一个单值低于该平 均值的70%。便可再取1组3个冲击试样 做附加试验。附加试验所得的结果与原来 的结果相加得到一个新的平均值,该值不 低于规定的平均值时, 方可验收; 且在这 六个单值时, 低干平均值的单值不得超过 两个,仅允许一个单值低于该平均值的70 %, 否则, 仍不能验收。

当锚链拉伸试验不合格时,应取两 倍试样进行复试 复试试样取自原链节的 不同链环上,只要两个试样试验结果均符 合《材料与焊接规范》(1998) 2003 年修 改通报中第10章第2节的相关要求,才能 予以验收, 否则判废。

二、三级锚链附件力学性能试验,应 将同一工艺、同一炉号、同一热处理,制 造相同的同一附件(包括肯特卸扣、转环 组、旋转卸扣、加大链环、末端链环) 不 大于25个取1个,连接链环不大于50个 取1个做力学性能试验,取1个拉伸试样 和1组各3个夏比V型缺口冲击试样,试 验结果符合《材料与焊接规范》(1998) 2003年修改通报中第10章第2节表10.2. 8.5(2)的要求。

- 二、三级锚链附件力学性能不合格 的, 允许这批附件重新进行一次热处理, 再作复试,如仍不合格,则该批附件判废。
- 二、三级锚链附件冲击试样的附加 试验程序同三级锚链的要求。
- 二、三级锚链附件不合格时,应取两 倍试样进行复试,复试试样取自该批附 件, 只要两个试样试验结果均符合《材料 与焊接规范》(1998) 2003年修改通报中 第10章第2节的相关要求,才能予以验收, 否则判废。

成品锚链及附件的交货状态

锚链及附件应根据其等级按《材料 与焊接规范》(1998) 2003 年修改通报中 第10章第2节表10.2.7.1 要求的热处理 状态交货,热处理应在锚链或附件制造完 工后且未进行拉力负荷试验和破断负荷试 验之前进行。骤

CHINA SHIP SURUEY 2004.2. 85